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Abstract-The governing equations for momentum and energy transport have been solved for the thermo- 
capillary Row in a differentially heated square cavity. The fluid was assumed to contain a surface active 
impurity such that the surface tension was a quadratic function of the temperature where the maximum 
surface tension occurs at the mean cavity temperature. A Prandtl number of 0.1 was used because the 
primary interest here is for liquid metals. For low Marangoni numbers the flow was steady, stable and 
symmetric about the center vertical plane and consisted of two opposing vortices. For Marangoni numbers 

above 1200 the flow, given an initial disturbance, was oscillatory and in a periodic steady state. 

1. INTRODUCTION 

FLOWS induced by surface tension gradients (Maran- 
goni flows) occur in the processing of materials where 
small amounts of material are melted and allowed 
to resolidify ; common examples include welding and 
crystal growth operations. In these processes large 
temperature differences are created in small amounts 
of liquid which have a large free surface area to volume 
ratio. The surface tension gradients resulting from the 
large temperature differences in the liquid can produce 
fluid velocities as large as one meter per second. The 
flow affects solute distributions and crystal structure 

in the re-solidified material and weld penetration. The 
effects of Marangoni flows are complex and variable 
because the surface tension is affected by small 
amounts of surface active impurities, e.g. sulfur in 
molten steel. The concentrations of impurities often 
vary with materials which alters the Marangoni flow 
and its effects on the product material. These effects 
make it extremely difficult to control or predict the 
properties of the finished product. 

Experimental studies of flows in small liquid vol- 
umes have exhibited a transition from a steady to an 
oscillatory state. Hurle et al. [I] measured tem- 
peratures in flows of molten gallium (Pr = 0.02) that 
were contained in open rectangular boats and heated 
from one side. Temperatures were found to oscillate 
for boat temperature differences above a critical value 
which depended on the dimensions of the boat. 
Schwabe and Scharmann [2] measured temperature 

t This work was supported by the U.S. Department of 
Energy under contract No. DE-AC04-76DP00789. 

oscillations in sodium nitrate (Pr = 9) in a cylindri- 
cal floating zone suspended between the ends of two 
coaxial cylinders where the upper cylinder was heated. 
The onset of the oscillations occurred at a critical 

Marangoni number (Mu,) approximately equal to 
1.6 x 104. They pointed out that the onset of oscil- 
lations in a floating zone as measured by Chun and 
Wuest [3] in methyl alcohol (Pr = 7) also coincided 
with a Marangoni number of this order of magnitude 
and that the onset of oscillations in the open boat 
experiment in ref. [l] occurred for Ma = 2 x IO’. Chun 

and Wuest [4] investigated methyl alcohol (Pr = 7) in 
a floating zone. They measured temperature oscil- 
lations (Mu, = 1.4 x 104) and simultaneously visu- 

alized the oscillating flow with a ‘light-cut’ technique. 
The flow visualization revealed an asymmetrical oscil- 

lating flow pattern. Kamotani et al. [5] measured 
temperature oscillations in floating zones of hexa- 
decane (Pr = 0.09) and Fluorinert (Pr = 0.11) (3M 

Co.) with the onset of oscillations occurring at Maran- 
goni numbers approximately equal to 2 x 104. 

Smith and Davis [6] performed a stability analysis 
of a planar liquid layer subject to an imposed constant 

temperature gradient parallel to the free surface. A 
linear variation of the surface tension with tem- 
perature was specified. A parallel return flow solution 
to the momentum and energy equations was used as 
the basic state. The three dimensional disturbance 
equations were solved and an oscillatory instability in 
the form of oblique hydrothermal waves was obtained 
for Pr < 0.6. Mu, decreased for decreasing Pr. 

Carpenter and Homsy [7] studied two dimensional 

thermocapillary flows in square cavities with a non- 
deformable free surface. Surface tension was assumed 
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NOMENCLATURE 

(‘1’ specific heat 

e,, e,., er unit vectors in the coordinate 
directions 

F ne, \I% net tangential force acting on the 

boundaries of the fluid 

.\‘. I’ the horizontal and vertical coordinates. 

respectively 

XC, the location of the dividing streamline 
between the vortices (at ,I’* = 1). 

F, r,\< net tangential boundary force acting 
on the left vortex 

Greek symbols 
?! 

F net tangential boundary force acting on ’ 
surface tension 

R II>C 
the right vortex iir the maximum value of dl;/dT 

k thermal conductivity I’ dynamic viscosity 

1, length of a side of the square domain 
density 

Mu Marangoni number, y,ATpc:,,L/(ptk) fl stream function 

Pr Prandtl number, ,uc,,/k 
c II vorticity. ez. V x V. 

t time 
T temperature Subscripts and superscripts 
V the velocity vector * dimensionless quantities 

VC the velocity scale, yrAT/p L, R left, right vortices. 

to decrease linearly with temperature. A wide range 
of values of Pr was considered along with Marangoni 
numbers exceeding 105. A linear stability analysis 
showed that the flows were stable to a restricted class 
of disturbances. They concluded that oscillations in 
thermocapillary flows must include modes with either 
three-dimensional effects or free surface defor- 
mations, or both of these elements simultaneously. 

In the stability analyses cited, the rate of change of 
surface tension with temperature was assumed to be 
a constant. This is often a good assumption for pure 

liquids, where surface tension is a maximum at the 
fusion temperature and monotonically decreases as 
the temperature increases towards the critical tem- 
perature. However, if a surface active element is pres- 

ent the variation of the surface tension with tem- 
perature is more complex. Sahoo et trl. [S] determined 
the effects of small concentrations of surfactants on 

the surface tension of liquids. For low temperatures, 
the concentration of the surfactant on the surface may 
be large which results in a smaller surface tension. As 
the temperature increases, the surfactant is driven off 
the surface: the surface tension then increases until 

the surface concentration is sufficiently low that the 
surface tension dependence on temperature becomes 
similar to that of a pure liquid. Thus. when an 
impurity is present, the rate of change of surface ten- 
sion with temperature can be positive for low tem- 
peratures and negative for high temperatures. 

In the present work, thermocapillary flow in a two 
dimensional differentially heated square cavity with a 
non-deformable free surface is studied. A quadratic 
function of temperature was used for the surface ten- 
sion to study the effects of surface active impurities ; 
e.g. sulfur, that may exist in small concentrations in 
otherwise pure liquids such as molten steel. For these 
conditions the rate of change of surface tension with 

temperature, is positive for low temperatures and is 
negative for high temperatures [8]. Unlike the flows 

previously studied [6, 71. the two dimensional flow 
studied here was found to be unstable to asyjmmetric 
two dimensional disturbances and to bc oscillatory 
and periodic for Mardngoni numbers larger than 
approximately 1200. 

2. PROBLEM DEFINITION 

In this section the governing equations are pre- 
sented for the model problem proposed by Zebib et 
al. [9] for flow in a differentially heated square cavity 
driven by thermocapillary forces. The case considered 
here is for a fluid containing a surface active impurity, 
with the surface tension varying as a quadratic func- 
tion of the temperature. 

The governing equations, in vorticity-stream func- 

tion form, are scaled as in Zebib rt ml. [9]. Length, 
time, stream function and vorticity are scaled by L, 
L/V,. LV, and VJL, respectively. L is the length of 
the cavity walls and V, is a velocity scale given by 
;lrAT/n, where y7 is a surface tension parameter dis- 
cussed below and AT is the temperature difference 
across the cavity. The temperature is scaled as 
T* = (T- T,)/AT. where T is the dimensional tem- 
pcrature. The conservation equations are given by : 

?T* 
;,* +V**(T*V*) = joV*‘T* (1) 

l?ru* 
;,j* +v**(u*v*) = ?!Y!V*‘wt (2) 

(I,* zz v*q* (3) 

where CO* = e_* V* x V* is the vorticity, Ma = 
~rATpc,L/(lc~)-is the Marangoni number and Pr = 
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pep/k. The fluid velocity vector, V*, is written in terms 

of the stream function according to : 

v*= _!ee +Yc, 
ay* ’ ax* ” 

The boundary conditions are : 

l+b*=o, g= 0, T* = 1 .Y* = 0, (5a, b, cl 

+*=O, g=O_ T*=O x*=1, (6a, b, cl 

** =o, $0, q* =o y* = 0, 
,,’ 

U’a, b, cl 

I)* = 0, w* = dy* dT* 
dT* dx* ’ 

q*=o 4’*=1. 

@a, b, c) 

The temperature T, is specified on the right vertical 
wall and the higher temperature, To+ AT, is on the 
left wall. The bottom and top surfaces are adiabatic. 
The no-slip condition is applied to the bottom and 
sides of the cavity. The upper free surface is assumed 
to remain flat and subject to the tangential forces of 
surface tension and viscous shear. 

Equations (9a, b) are used to approximate the 
results given by Sahoo et al. [8] for the surface tension 
and its derivative, as a function of temperature : 

li’* = T*-TT*‘, ic; = (l-2T*). (9a, b) 

The surface tension is scaled according to 
y* = (y -yO)/(ATyr) where y,, is the value of the surface 
tension at the temperature, To. According to equation 

(9a), the maximum surface tension occurs at the 
mean cavity temperature. yr is the maximum value 
of dy/dT for the temperature range considered here. 
Equations (9a, b) are present in Fig. 1 along with 
the results of Sahoo et al. [8] for molten steel with 
sulfur as an impurity at a concentration of 30 p.p.m. 
For the Fe-S system, their results give y = 1229 dyne 
cm-’ and dy/dT = 0.332 dyne cm-’ “C’ for a tem- 
perature of 1536’C. In Fig. 1 their results were nor- 
malized using these values for yO, yr and To, respec- 
tively, and AT was set equal to 1400°C. Both the 
results of Sahoo et al. [8] and the quadratic for- 
mulation give both positive and negative values for 
dy/dT and the variation with temperature is roughly 
anti-symmetric about T* = 0.5. 

3. SOLUTION METHOD 

The integral forms of the governing equations are 
obtained by integrating equations (l)-(3) over control 
volumes; the divergence theorem is used to replace 
volume integrals of the divergence of a vector with the 
area integral of the normal component of the vector. 
Central finite difference expressions are used to rep- 
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FIG. I. The non-dimensional surface tension and derivative 
of surface tension with respect to temperature vs temperature 

from Sahoo et al. [8] and for a quadratic formulation. 

resent the diffusion terms and the values of the advec- 
tion terms at the control volume surfaces are deter- 
mined by linear interpolation. The adiabatic 

boundary conditions for the energy equation are 
incorporated by applying the integral form of the 
energy equation to half size control volumes sur- 
rounding the boundary grid points. The advection and 
diffusion terms are integrated over the three control 
volume faces that are interior to the domain only, and 
no energy enters the remaining control volume face 
that is on the upper (equation (8~)) or lower (equa- 
tion (7~)) boundary of the domain. The no-slip con- 
dition is applied by using the conditions placed on the 
first derivative of I/I with respect to the normal to the 
wall (equations (5b), (6b) and (7b)) and developing 
second order expressions for the vorticity, as discussed 
by Raithby and Torrance [lo]. Time integration is 
accomplished using the alternating direction implicit 
(ADI) method where the tridiagonal matrix algorithm 
is used. The stream function equation is solved directly 
using LDU decomposition. The calculations were car- 
ried out on a CRAY XMP. 

A non-uniform grid was used for most of the cal- 
culations where the grid spacing in the vertical direc- 

tion was reduced such that finer spacing was obtained 
near the surface and the grid spacing in the horizontal 
direction was varied such that the finest grid spacing 
was obtained at the center of the domain. The change 
in spacing wdS controlled by the factors R, and R, 

where R, is the ratio of two successive grid spacings 
in the vertical direction, R,. = AL’,,,+ ,/AJ~~,,, and R, is 
the ratio of two successive grid spacings in the hori- 
zontal direction, R, = As,, ,,,/Ax,,, for x < 0.5, and 

R, = A.x,,,IAx,+ I,,, for x > 0.5. Most of the cal- 

culations were done on a grid with 41 points in the 
x direction and 31 points in the y direction where 
R.,. = 0.95 and R, = 0.92. Calculations were also 
repeated for the largest value of Mu considered (2000) 
with a finer grid (61 x 51) where R,. = 0.97 and 
R, = 0.95. Very good agreement between the results 
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FIG. 2. Steady stak streamline (aj and tempera:ure (b) contours for Ma = 1000. SLreamline and temperature 
contours arc in increments of 1.59 x IOmJ and 0.0714. respectively. 

was obtained for the two grid sizes. Specifically, the 
differences in the maximum velocity (located on the 

free surface), the maximum value of the stream func- 
tion and the period of the oscillation were 8, 3 and 

I %, respectively. 

4. RESULTS 

The initial conditions for the calculations were a 
linear function of .Y* for the temperature and a zero 
value for the fluid velocity. The unsteady development 
of the temperature and flow fields to a steady state 
was calculated. The steady solutions were tested for 
stabiiity by introducing a perturbation to the tem- 
perature on the left side of the upper surface. The 
perturbation. T,*, was given by T;T = A ~.Y*(.Y* - 0.5). 
for (0 < .Y* < 0.5), and Tz = 0, for .Y* > 0.5. 7’; was 
added to the steady result for the temperature on the 
surface, and then the calculations were continued until 

either the flow was again steady. or until periodic 
motion was established. AZ was varied from 0.1 to 
0.5 to test the dependence of the ensuing response of 
the flow and lemperaturc fields on the perturbation. 

Calculations were carried out for Pr = 0. I and a 
range of values of Ma from 1000 lo 2000. Starting 

from the stagnant flow conditions. the flow and tem- 
perature Gelds developed into a steady state for 
Mu = 1000 as shown in Fig. 2. In contrast to the 
results obtained by Zebib et al. [9] for d:“/dT* equal 
to a negative constant. the present results for both the 
flow and temperature fields are symmetric about :hc 
line .Y* = 0.5 (note that the symmetry for the tcm- 
perature field holds only for the shape of the tem- 
peraturc contours, not for their values). For the cast 
considered here the flow consists of two counter rotat- 
ing vortices. and the flow direction on the surface is 
towards the center, .Y* = 0.5. This is because the sur- 

(b) 

face tension is a maximum at the mean cavity tcm- 
perature which for this steady solution is located at 
the center of the surface. After obtaining the steady 
solution shown in Fig. 2, the perturbation, c with 
AZ = 0.5, was introduced and the calculations were 
continued. For Ma = 1000, the efl’ects of the pcr- 
turbation diminished and the flow and temperature 
fields returned to the steady symmetric states shown 

in Fig. 2. 
For MU = 2000, the unperturbed solution again 

came to a steady symmetric state similar to that shown 
in Fig. 2 for Mo = 1000. Again the asymmetric per- 

turbation. Tz, was added to the steady temperature 
field.7 Following a short transition period, the ensuing 
response was now found to consist of periodic oscil- 
lations. Different values for A,*, between 0. I and 0.5, 

affected the time interval for the transition period. but 
did not affect the frequency, amplitude or form of the 
fully developed periodic oscillations. The streamlines 
for different states spanning one half of the period of 
the fully developed motion (the other half is similar) 
are shown in Fig. 3. Figure 3(a) shows two vortices 
of unequal size. where the vortex on the left is close 
to its minimum size during the course of the oscil- 
lations and the vortex on the right IS close to its 

maximum size. Following this state the left vortex 
incrcascs in size while the right vortex dccrcases in 
sire. Fig. 3(b) shows the vortex on the left after it has 
incrcascd in size such that it fills a large portion of the 
cavity while the right vortex is reduced in size. The 
right vortex then begins to collapse as shown in Fig. 
3(c), i.e. the dividing streamline is moving from the 
left wall toward the right wall. Figure 3(d) shows the 

t Note that a calculation using a symmetric perturbation 
was also carried out, and the results showed that the flow 
returned to the steady symmetric state. 
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FIG. 3. Oscillating streamline contours for one half of a cycle for Ma = 2000. t = 20.8 s (a), t = 22.2 s (b). 
t = 22.6 s (c). f = 23.2 s (d). Streamline contours are in increments of 3.17 x IO 4. 

left vortex at a maximum size and the right vortex at 
a minimum size, the mirror image of the state shown 
in Fig. 3(a). Following the state shown in Fig. 3(d), 
the process is reversed and the system returns to the 
state shown in Fig. 3(a) which completes one full 

cycle. 
Figure 4 shows several variables starting from the 

initial stagnant conditions (with Ma = 2000) and 
developing to a steady state and the development of 
oscillations following the perturbation at t = 2 s. Fig- 
ure 4(a) shows the location of the intersection of the 

dividing streamline with the top surface, XX. The 
value of X$ indicates the relative sizes of the vortices, 
e.g. when X,* is close to unity the right vortex is small 
and the left vortex is large. Figure 4(b) shows the 
values of the stream function at the centers of the left 
and right vortices, I+!$ and tjg. respectively. These give 

the volume flow rates of the two vortices. Figure 4(c) 
shows the extreme values of the fluid velocity on the 
upper surfaces of the left and right vortices, P’: and 
V& respectively. The temperature on the surface, at 

x* = 0.5. is shown in Fig. 4(d). Note that as the size 
of a vortex increases (see X,*), the flow rate (see +: or 
$t) increases and the fluid velocity decreases; i.e. the 
increase in the flow rate of a vortex is due to an 

increase in the size of the vortex (and is not due to an 

increase in the fluid velocities within it). 
The forces affecting the motion are now examined.+ 

The thermocapillary force at the upper (free) surface 
on the ‘left’ which drives the motion of the left vortex 
is constant (not shown), and equal in magnitude and 
opposite in sign (i.e. direction) to the thermocapillary 
force at the upper (free) surface on the ‘right’ which 
drives the motion of the right vortex (see Appendix). 
There are also viscous shear forces acting on the fluid 
at the no-slip walls of the cavity which resist the 

motion of the fluid ; these are given by plods, where 
s is the distance measured along the boundaries of 
the cavity, and are positive when leading to counter- 
clockwise rotation and are negative when leading to 
a clockwise rotation. The value of the thermocapillary 
force is approximately twice the value of the viscous 

shear force acting on both vortices. The viscous shear 
(drag) forces acting on the left and right vortices, 
F:_,,,, and Fg_ ,,~, respectively (the forces are scaled 

t It is noted that a referee indicated that a description for 
why the oscillations take place may also be made in terms of 
vorticity or momentum conservation. 
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FIG. 4. The oscillating values of the location of the dividing streamline at the upper surface, A”,* (a), the 
values of the stream function in the center of the left and right vortices, t,!~: and $X, respectively (b). the 
extreme values of the fluid velocity on the upper surfaces of the left and right vortices, V: and V& respectively 

(c), and the temperature at the center of the upper surface, 7‘: (d), vs time for Ma = 2000. 

by p(J), are of opposite sign (consistent with the 
opposite directions of rotation of the left and right 
vortices), and are neither equal (in absolute value) 
nor steady, and this inequality causes the oscillations. 
The sign of the net viscous shear force, F,*,, ,,,c = 

FL,,,, + F$_ ,,*c, determines which vortex increases 
in volume and which decreases. 

Figure 5 shows the values of F:_,.,,,, FX_.,,,, F,*,,_ y,~c, 
V: and Vg. The velocities are shown because their 
direction of change, i.e. whether they are increasing 
or decreasing, is representative of the direction of 
change of the fluid velocities throughout the respective 
vortices. This is pertinent to the following discussion 
because the shear stress acting on the fluid at the no- 
slip boundaries increases with increasing fluid 
velocity. The times of the states shown in Fig. 3 arc 
noted in Fig. 5 to help clarify the oscillations. At the 
time of the state shown in Fig. 3(a), labeled ‘a’ in Fig. 
5, the left vortex has collapsed and the right vortex 
has completed filling most of the volume of the cavity. 
Although the fluid velocities in the right vortex are 
relatively low, as indicated by the near minimum value 
of IVgl, the contact area of the right vortex with the 
no-slip boundaries of the cavity, A,, is large (as shown 
in Fig. 3(a)) which results in a large drag force. The 
large negative ‘spike’ in the curve for Fg_.,,, at the 
time labeled ‘a’ shows this large drag force. At the 

same time the contact area of the left vortex with the 
no-slip boundaries, A,, is small. The small positive 
‘spike’ in F:_,,,,, at the time labeled ‘a’ is due to the 
near maximum values of the fluid velocities in the left 
vortex. The net drag force, F,*,,_ y,sc, is negative, i.e. the 

value of lF$_,,,,,I is larger than that of lF:_v,sCj, which 
causes the left vortex to increase in size and the right 
vortex to decrease. 

As the size of the left vortex increases and the state 

of the system progresses towards that shown in Fig. 
3(b), the fluid velocities in the left vortex decrease and 
those in the right vortex increase, and since A, remains 
much larger than AL, F&t ~y,,c remains negative. This 
results in the continued increase in the size of the left 
vortex. Generally, for A, larger than AL, lFX_,,,,l will 
be larger than IF: ,,,J and the left vortex continues 
to increase in size. Note, however, that at the time 
labeled ‘c’ in Fig. 5, the right vortex begins to collapse 
as shown in Fig. 3(c). Here A, is larger than A,, but 
the flow field in the left vortex near the bottom of the 
cavity is still developing and the fluid velocities there 
are relatively small at this time. Hence the additional 
contact between the left vortex with this portion of the 
no-slip boundary has not yet resulted in an important 
contribution to Ft YisC. Thus (F$_.,,,l remains larger 
than IF:_,J and the collapse of the right vortex con- 
tinues. At the time labeled ‘d’ in Fig. 5, where the right 
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14.0 16.0 18.0 20.0 22.0 24.0 26.0 28 3 

Time - s 
FIG. 5. The extreme values of the fluid velocity on the upper surfaces of the left and right vortices, V: and 
V*,, respectively. The oscillating values of the viscous shear forces acting on the fluid at the no-slip 
boundaries for the left and right vortices, Ff_,,,, and FE_,,,,, respectively, and the net viscous shear force, 

F,*,,_.,,, = F:_,,,,+ F$_ I,,c, for Ma = 2000. 

vortex has fully collapsed (Fig. 3(d)), the state of the 
system is the mirror image of that discussed for the 
time labeled ‘a’. There is a large positive ‘spike’ in 

F:_.,,, due to both the large value of AL and the large 
velocities in the vicinity of the no-slip boundaries. 
This results in a value of IF:_>,J which is larger than 
IF: _& (i.e. a positive value of F,*,,_,,,,) and now the 

right vortex begins to increase in size. Thus, it is the 
collapse of the right (or left) vortex that results in a 
change in sign of F,*,,_.,,, which then initiates its re- 
growth. 

Calculations were carried out for intermediate 
values of Ma in order to identify more precisely the 
critical value of the Marangoni number, Mu,. The 
effects of large perturbations on the flow for 
Ma = 1 I25 diminished with time, as discussed for 

the Mu = 1000 case, except that now more time was 
required for the tlow to return to a steady state. Per- 
turbations for Mu = 1250 and 1500 resulted in per- 
iodic oscillations in the flows, and a value of Ma, 
of approximately 1200 is suggested. For those cases 
where the perturbation resulted in an oscillating flow. 
the amplitude and frequency of the oscillations 
increased with increasing values of Mu. 

Note that in the cases discussed above, the 
maximum value of the surface tension was near the 
center of the surface and the direction of flow near 
the surface was towards this central location. The 
opposite case was also considered, i.e. the maximum 
value of the surface tension was located at the walls, 

i.e. 7* = 0.25 - T* + T* ‘. This resulted in two counter 
rotating vortices, as obtained for ;‘* given by equation 
(9a), except that for this case the directions of 
rotation were counter-clockwise for the left vortex 
and clockwise for the right vortex, i.e. the flow was 
outwards from the center of the free surface towards 
the left and right walls. The flow was stable for all 
values of Ma considered which included values for 
Ma up to IO 000. 

5. SUMMARY AND CONCLUSIONS 

Thermocapillary flow in a differentially heated two 
dimensional square cavity was studied for a fluid con- 
taining impurities such that the surface tension was a 
quadratic function of the temperature and Pr = 0.1. 
For Mu greater than approximately 1200, the flow was 
found to be unstable to two dimensional asymmetric 
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disturbances which result in oscillations. The essential 
characteristic which produces the oscillations is the 
existence of a maximum surface tension that is neal 
the ccntcr of the surface which results in opposing 
vortices where the flow direction at the surface is 
towards the center of the domain. This condition 

occurred in this study due to a surface temperature 
gradient that was entirely in one direction. i.e. from 
the cold to the hot wall. combined with positive values 
for dy/dT near the cold wall and negative values of 
di!/dT near the hot wall (which results from the pres- 

ence of impurities, cf. Sahoo et 01. [8]). This condition 
could also occur due to values of dy/dT which are 
entirely positive combined with a temperature gradi- 
ent that is positive in the direction pointing away from 
the solid boundaries of the domain. This condition 

for the temperature would result when a heat source 
is applied at or near the center of the top surface and 
the boundaries of the domain are kept relatively cool, 
as occurs in weld pools. Again, a positive value of 
d;!dT is required which results. at least for a limited 
temperature range, from the presence of impurities. 
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It is not immediately apparent that the net driving force 
is constant. The thermocapillary force, as given by equation 
(8b). can also be expressed in terms of the rate of change 
of the surface tension with distance along the free surface, 
-dp*/dx*. The net thermocapillary force is given by the 
integral. 
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where the limits of integration are from X* = 0 to .k’,y for the 
thermocapillary force driving the left vortex, Ft. _, and are 
from x* = X,* to I for the thermocapillary force driving the 
right vortex, F$ ;. The surface tension at the walls (i.e. 
x* = 0 and I) is zero as given by equations (5c), (6~) and 
(9a). The calculations show that the surface tension at 
Y* = ,I’,* is the maximum value, y* = 0.25, regardless of the 
value of X:; i.e. the results for temperature at X* = Xx. 
give T* = 0.5 (to within 1.2% for Mu = 2000), which yields 
;j* = 0.25. Thus, Ft., = -FX_, = -0.25, i.e. F:_;, and Fz 
are constant (independent of time) and equal in magnitude 
but with opposite sign. This is expected because the fluid 
everywhere on the surface flows towards the point of 
maximum surface tension. By definition, the point at 
x* = ,I’,* is where the horizontal component of the fluid 
velocity, u, is zero with u z 0 (flow is in positive x-direction) 
for X* < .I’,* and with u < 0 for X* > Xz. 

_. 

APPENDIX 

’ dp* 

! - X;Zd.\-* = -dy*. 


